DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE

Regular End Semester Examination – Summer 2022

Course: B. Tech Branch: Electrical Engineering and Allied Branches Sem: IV

Subject Code & Name: BTEEC401 Network Theory

Max Marks: 60 Date:- 12/08/2022 Duration:- 3.45 Hr.

Instructions to the Students:

- 1. All the questions are compulsory.
- 2. The level of question/expected answer as per OBE or the Course Outcome (CO) on which the question is based is mentioned in () in front of the question.
- 3. Use of non-programmable scientific calculators is allowed.
- 4. Assume suitable data wherever necessary and mention it clearly.

(Level/CO) Marks

Q. 1 Solve Any Two of the following.

- A) Explain the difference between short circuit (SC) and open circuit (OC) with Understand
 an example.
- B) Explain the following terms with suitable example Understand
 - 1. Linear and non linear elements
 - 2. Unilateral and bilateral elements
- C) Explain two types of energy source. Distinguish between ideal and non-ideal Understand/ 6 sources.

 Analysis

Q.2 Solve Any Two of the following.

A) State and Explain KVL and KCL with example

Knowledge

B) Following figure represents a resistive network. Draw its graph. Select a suitable tree and obtain the tie-set matrix.

Comprehen

sion

C) State the Thevenin's theorem and find current through branch AB using Thevenin's theorem. Refer following figure.

Comprehen

0

Sion /
Evaluation

Q. 3 Solve Any Two of the following.

A)	Explain first order and second order RC and RL circuit.	£2,000	Onderstand	
B)	Explain various properties of a capacitor.		Understand	6
C)	An inductor with initial current I ₀ is connected to a resistor of R of	ohms at	Evaluation	6
	t = 0. Derive the expression for the current through inductor and v	oltage		
	across inductor at any time $t > 0$.	206647	- 7/0 % 6 6 6 7 - 70 % 6 6 7 7 7 6 6	

Q.4 Solve Any Two of the following.

Explain first order and second order PC and PI circuit

A)	Derive the symmetry and reciprocity condition	of z-parameters.	Evaluation 6
D)	Evalois 7 Descriptions in terms of V resources		

- B) Explain Z-Parameters in terms of Y-parameter & h-parameters. Understand
- C) In following figure the switch K is kept first at position 1 and steady state Evaluation condition is reached. At t=0, the switch is moved to position 2. Find the current in both the cases.

Q. 5 Solve Any Two of the following.

- A) Derive the expression for resonant frequency f_r of a series resonant circuit. Synthesis
 B) Derive the expression for Q factor of parallel resonating circuit. Synthesis
 C) Design a constant K LPE with f_{requency} = 600 Q At what frequency Synthesis
- C) Design a constant K LPF with $f_c = 1$ KHz and $R_O = 600 \Omega$ At what frequency Synthesis α will be 10 Db?

To calculate (i) L, C (filter Elements)

(ii) Frequency at which $\alpha = 10 \text{dB}$

*** End ***